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Improved annotation of antibiotic resistance
determinants reveals microbial resistomes cluster
by ecology
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Antibiotic resistance is a dire clinical problem with important ecological dimensions. While
antibiotic resistance in human pathogens continues to rise at alarming rates, the impact of
environmental resistance on human health is still unclear. To investigate the relationship between
human-associated and environmental resistomes, we analyzed functional metagenomic selections
for resistance against 18 clinically relevant antibiotics from soil and human gut microbiota as well as
a set of multidrug-resistant cultured soil isolates. These analyses were enabled by Resfams, a new
curated database of protein families and associated highly precise and accurate profile hidden
Markov models, confirmed for antibiotic resistance function and organized by ontology. We
demonstrate that the antibiotic resistance functions that give rise to the resistance profiles observed
in environmental and human-associated microbial communities significantly differ between
ecologies. Antibiotic resistance functions that most discriminate between ecologies provide
resistance to b-lactams and tetracyclines, two of the most widely used classes of antibiotics in
the clinic and agriculture. We also analyzed the antibiotic resistance gene composition of over 6000
sequenced microbial genomes, revealing significant enrichment of resistance functions by both
ecology and phylogeny. Together, our results indicate that environmental and human-associated
microbial communities harbor distinct resistance genes, suggesting that antibiotic resistance
functions are largely constrained by ecology.
The ISME Journal advance online publication, 8 July 2014; doi:10.1038/ismej.2014.106

Introduction

Multidrug resistance in clinical pathogens con-
tinues to rise, whereas the pipeline for new
antibiotic development and approval continues to
dwindle (Spellberg et al., 2004). Consequently, we
face the prospect of returning to a preantibiotic era,
where an increasing number of infections can no
longer be treated effectively with our current arsenal
of drugs. Although it is clear that dissemination of
antibiotic resistance (AR) extends beyond the clinic
(Wright, 2010; Forsberg et al., 2012) and includes
many routes through agricultural and environmental
microbial communities, the full impact of environ-
mental AR on human health is still unknown
(Finley et al., 2013). A deep quantitative under-
standing of the ecological relationship between
environmental and human-associated microbial

resistomes is necessary to evaluate the relative
importance of these diverse ecologies in AR gene
acquisition by human pathogens.

Hindering our ability to study the ecology and
transmission of AR genes between environmental
and human-associated reservoirs is the difficulty in
accurately identifying AR functions from sequence
alone. This is emphasized by continual identifica-
tion of sequence-novel AR genes in almost every
microbial community, including soil (Riesenfeld
et al., 2004; Allen et al., 2008; Torres-Cortes et al.,
2011; Forsberg et al., 2012), activated sludge (Mori
et al., 2008; Parsley et al., 2010), human gut and
oral microbiomes (Diaz-Torres et al., 2003, 2006;
Sommer et al., 2009; Cheng et al., 2012) and animal
gut microbiomes (Kazimierczak et al., 2009). This
enforces the need for functional validation in
studies of AR transmission (Pehrsson et al., 2013)
and for improved methods to identify sequence-
divergent AR determinants in silico.

In order to quantitatively analyze the relationship
between environmental and human-associated
resistomes, we developed Resfams, a curated data-
base of protein families and associated profile
hidden Markov models (HMMs), organized by
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ontology and confirmed for AR function. Profile
HMMs have been widely adopted for improved
annotation of general functions in microbial gen-
omes and metagenomes (Meyer et al., 2008;
Markowitz et al., 2012). However, they have not
yet been specifically applied to AR functions in
microbial communities or genomes. Once developed
and validated, Resfams profile HMMs were applied
to quantitatively understand the relationship
between human-associated and environmental resis-
tomes using both functional selections to 18 anti-
biotics from the soil and human microbiota and
analysis of over 6000 microbial genomes represent-
ing diverse phylogenies and habitats.

Materials and methods

Building of profile hidden Markov models (HMMs)
Resfams AR family profile HMMs were built by (1)
generating a multiple sequence alignment for each
AR family (see Supplementary Methods) using
MUSCLE (Edgar, 2004) v3.8.31 with default para-
meters and (2) training profile HMMs using the
hmmbuild function of the HMMER3 (Finn et al.,
2011) software package using default parameters.
Gathering thresholds were added to the profile
HMMs by using a test set of known AR proteins
and optimizing precision and recall metrics (see
Supplementary Methods). Resfams profile HMMs
were first trained using 2097 unique AR protein
sequences from the Comprehensive Antibiotic
Resistance Database (CARD) database (McArthur
et al., 2013), the Lactamase Engineering Database
(LacED) (Thai et al., 2009) and Jacoby and Bush’s
collection of curated b-lactamase proteins (http://
www.lahey.org/Studies/).

This core database of 119 profile HMMs was
supplemented with an additional 47 profile HMMs
from the Pfam (Bateman et al., 2000) and TIGRFam
(Haft et al., 2003) databases to generate the full
Resfams profile HMM database, resulting in a total
of 166 AR-specific profile HMMs (Supplementary
Table S1). The 47 additional profile HMMs included
in this version of Resfams have been curated and
demonstrated to identify protein families that
commonly contribute to AR, such as acetyltrans-
ferases, AraC transcriptional regulators, Major
Facilitor Superfamily (MFS) transporters, ATP-bind-
ing cassette (ABC) efflux pumps and so on (see
Supplementary Table S1 for HMMs with ‘HMM
Source’ of Pfam or TIGRFam). These supplementary
profile HMMs were verified using functional
assays, including functional metagenomic selec-
tions of the soil microbiota and the human gut
microbiota. The full version of the Resfams database
is only utilized when there is previous functional
evidence of AR activity, such as functional metage-
nomic selections. All versions of the Resfams
database and supporting datafiles are available at
http://dantaslab.wustl.edu/resfams.

Protein annotation using Resfams profile HMMs or
BLAST to AR-specific databases
Proteins were aligned to the core Resfams database
of profile HMMs (Resfams.hmm) for microbial
genome annotation or the full Resfams database
of profile HMMs (Resfams-full.hmm) for func-
tional metagenomic selections using the hmmscan
function of the HMMER3 (Finn et al., 2011)
software package using the following parameters:
–cut_ga and –tblout. Antibiotic mechanism
and b-lactamase class classification used in this
analysis can be found in Supplementary Table S1.

The Antibiotic Resistance Database (ARDB;
Liu and Pop, 2009) and CARD (McArthur et al.,
2013) were used for comparison of Resfams
profile HMMs to pairwise sequence alignment
against known AR proteins. A protein was called
an AR protein if it had an amino acid identity
greater than or equal to the class-specific identity
threshold defined by ARDB documentation over
485% of the length of the target sequence. If no
class-specific identity threshold was defined or
the top hit was to a protein from the CARD
(McArthur et al., 2013) database, a protein was
called an AR protein if it had X80% amino acid
identity over 485% of the length of the target
sequence. To classify AR proteins by resistance
mechanism or b-lactamase Ambler class, we used
the mapping table in Supplementary Table S6.

Functional metagenomic selections
All functional metagenomic selections in this
analysis were selected, sequenced and assembled
into contigs as previously described (Forsberg et al.,
2012, 2014; Moore et al., 2013). Briefly, metage-
nomic plasmid libraries prepared in Escherichia coli
DH10B host were selected for resistant inserts
on Luria-Bertani or Mueller-Hinton agar plates
containing kanamycin (50 mg ml� 1; plasmid resis-
tance marker) plus the antibiotic of interest at a
concentration toxic to wild-type E. coli host.
Resistant inserts were then amplified and sequenced
using the Illumina (San Diego, CA, USA) Hi-Seq
Pair-End (PE) 76 or 101 bp sequencing protocol.
Sequencing reads were then assembled into contigs
using the PARFuMS (Parallel Annotation and Re-
assembly of Functional Metagenomic Selections)
pipeline (Forsberg et al., 2012). Open reading frames
were predicted in assembled contigs using the gene-
finding algorithm MetaGeneMark (Zhu et al., 2010)
using default parameters. Functional metagenomic
selections used for this study were prepared from (1)
multidrug resistant (MDR) cultured soil isolates, (2)
pediatric human fecal samples and (3) Cedar Creek
and Kellogg Biological Station soils, as outlined in
Supplementary Table S2. Resistome comparisons
were performed using a combination of R, Cytoscape
and the QIIME software package (Shannon et al.,
2003; Caporaso et al., 2010) (see Supplementary
Methods).
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Microbial genomes
A total of 6179 microbial proteomes were down-
loaded from the Integrated Microbial Genomes
database (IMG) on 18 August 2013. Open reading
frames were called using the IMG pipelines as
previously described (Markowitz et al., 2012) and
protein sequences downloaded from IMG were
used in all downstream annotation and analysis.
A complete list of the microbial genomes analyzed is
available in Supplementary Table S4, including
bacterial phyla, habitat and potential pathogen
status. Habitat and potential pathogen status was
curated using the metadata available from the IMG
database, using the ‘Habitat’ and ‘Diseases’ fields.
A mapping of values listed in the IMG metadata
‘Habitat’ and ‘Disease’ fields to the ‘Habitat’ and
‘Pathogen Status’ used in this study is available in
Supplementary Table S7.

Results and discussion

Optimization of antibiotic resistance profile HMMs
(Resfams)
Following extensive curation and functional valida-
tion (see Supplementary Methods), the full Resfams
HMM database contains 166 profile HMMs repre-
senting all major AR gene classes, including AR
genes against b-lactams, aminoglycosides, fluoro-
quinolones, glycopeptides, macrolides, tetracyclines
as well as efflux pumps and transcription factors
modulating AR. To improve Resfams prediction
accuracy, we optimized profile-specific gathering
thresholds (see Supplementary Methods) that set an
inclusion bit score cutoff for a protein sequence
alignment on a profile-by-profile basis (Punta et al.,
2012). We achieved perfect precision and high recall
(99±0.02%) of all AR proteins used to train the
Resfams profile HMMs (Supplementary Figure S1B).
We tested the prediction accuracy of these opti-
mized Resfams families on AR proteins from the
ARDB (Liu and Pop, 2009) not used in training of
the original profile HMMs. We predicted the AR
function of 2454 unique sequences, representing
54 Resfams protein families, and achieved perfect
precision and high recall (98±0.03%) for all
protein families (Supplementary Figure S1C). These
recruited protein sequences were subsequently
incorporated into the corresponding Resfams
protein families, resulting in the final database of
AR-specific profile HMMs used for all further
analyses in this study.

Resfams accurately predicts novel resistance functions
from sequence alone
The prediction sensitivity and specificity of Resfams
was evaluated using recent functional metagenomic
studies investigating the resistomes of cultured
soil microbiota and human gut microbiota (see
Supplementary Methods). We compared Resfams

HMMs with pairwise sequence alignment (BLAST)
against the ARDB (Liu and Pop, 2009) and CARD
(McArthur et al., 2013) databases for their ability to
predict AR function. Resfams demonstrated improved
sensitivity: 64% of AR proteins identified using
Resfams in both the soil and the human gut
microbiota were not identified by BLAST
(Figure 1). Focusing on the hand-curated, gold
standard set of AR proteins identified in the set of
95 MDR cultured soil isolates, we show that Resfams
was able to predict over 95% of the full-length AR
proteins (490 amino acids) (Figure 1a). In contrast,
pairwise sequence alignment to AR-specific data-
bases using widely accepted identity thresholds for
AR proteins (Liu and Pop, 2009) annotated o34% of
full-length AR proteins. Importantly, Resfams did
not identify any false positive AR proteins (that is,
not predicted by intensive hand-curation), ensuring
that AR potential of microbial communities is not
overestimated. Generating the gold standard set of
AR genes involved extensive hand-curation, includ-
ing functional characterization, phylogenetic analy-
sis and primary literature validation to identify
causative AR genes. This time-intensive process is
prohibitive for large-scale studies of AR potential of
microbial communities. In comparison, Resfams
enables automated, rapid, accurate and high-resolu-
tion predictions of AR proteins.

As a demonstration of the high-resolution and
high-specificity AR functional predictions of
Resfams, we focused on b-lactamases, one of the
most widely disseminated and clinically relevant
class of AR genes (Davies and Davies, 2010). In the
previously discussed soil and human gut functional
metagenomic data sets, 113 unique, full-length
b-lactamase proteins were predicted by Resfams
that were not predicted as an AR gene by pairwise
sequence alignment to AR databases (representing
45% of all identified b-lactamases). b-lactamases are
commonly classified into four molecular classes
(Ambler classes A, B, C and D) based on primary
structure (Ambler, 1980), with over 1000 unique
AR-related b-lactamases identified to date (Davies
and Davies, 2010). We accurately predict the
molecular class or subclass for over 60% of the
novel b-lactamases from the soil (Figure 2a) and over
80% of the novel b-lactamases from the human gut
(Figure 2b). Importantly, all of these predicted class
or subclass b-lactamases clustered with previously
reported b-lactamases of the same molecular class
on a phylogenetic tree (Figure 2c), confirming that
Resfams accurately categorized these b-lactamases
by sequence class where conventional computa-
tional methods were unable to even predict general
AR function.

Antibiotic resistomes cluster by ecology
Environmental, nonpathogenic and commensal
organisms have long been shown to harbor func-
tional AR genes (Benvenis and Davies, 1973;
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Marshall et al., 1998; Riesenfeld et al., 2004).
However, it was only recently established that
exchange of multiple classes of AR genes has
occurred between nonpathogenic environmental
bacteria and human pathogens (Forsberg et al.,
2012). These findings indicate that environmental
bacteria serve as potential reservoirs of AR genes
primed for exchange with pathogenic bacteria.
This motivates a high-resolution characterization
of the AR genes distinct to and shared between
environmental and human-associated microbial
communities. Analyses that employ Resfams pro-
tein families are capable of addressing this goal by
reducing bias in comparisons across ecological
barriers. As a demonstration, we re-annotated func-
tional metagenomic selections against 18 antibiotics
from uncultured human gut, soil microbiota and
MDR soil-dwelling cultured isolates using Resfams
(summarized in Supplementary Table S2).

To compare the diversity of underlying AR
functions that give rise to observed AR profiles
across samples and ecologies (Supplementary
Figure S2), a count matrix of unique protein
sequences per Resfams AR family identified in each
resistome was generated by summing across a subset
of five antibiotic selections included in all three data
sets (selections encompass four major classes of
antibiotics: b-lactams, tetracyclines, amphenicols
and glycopeptides). Although previous studies
have predicted an enrichment of AR genes in the
human gut microbiota (Hu et al., 2013), we found no
significant differences in the number of distinct AR

genes between the human gut and soil microbiota
when screened for functional AR. Resistomes
cluster by ecology using both Bray-Curtis and
Jaccard distance metrics (Po0.001, ANISOM;
Figure 3, Supplementary Figure S3), suggesting that
the soil and human gut microbiota consist of
functionally distinct AR gene architectures.

In order to determine the Resfams families that
most discriminate antibiotic resistomes between
ecologies, we used the supervised learning technique
Random Forests (Knights et al., 2011). This analysis
revealed that the separation of soil and gut
resistomes is driven mainly by b-lactamase and
tetracycline resistance functions (Figure 3). Subclass
B3 b-lactamases (class B) are mainly associated with
soil resistomes, whereas CblA (class A) and CMY/
LAT/MOX (class C) b-lactamases are found mainly
associated with the human gut. CblA b-lactamases
are species-specific cephalosporinases that have
been primarily identified in Bacteroides uniformis,
a common resident of the human gut microbiota
(Smith et al., 1994). Although this particular class A
b-lactamase uniquely discriminates between soil
and human gut resistomes, class A b-lactamases in
general are prevalent across all environments and
samples (94% of soil resistomes and 89% of human
gut resistomes). The low ratio of class C b-lacta-
mases to class B b-lactamases in the soil supports
previous findings in studies of the soil resistome
(Allen et al., 2008; Forsberg et al., 2014); however,
our results indicate that this trend is opposite in the
human gut resistome (class C/class B ratio: 0.42,

Am
ox

ici
llin

Pen
ici

llin

Car
be

nic
illi

n

Pipe
ra

cil
lin

Cef
din

ir

Chlo
ra

m
ph

en
ico

l

D-C
yc

los
er

ine

Gen
ta

m
ici

n

M
ino

cy
cli

ne

Oxy
te

tra
cy

cli
ne

Siso
m

ici
n

Tet
ra

cy
cli

ne
0

5

10

15

20

25

Resfams

ARDB/CARD

Hand Curated

Pen
ici

llin

Tet
ra

cy
cli

ne

Chlo
ra

m
ph

en
ico

l

Pipe
ra

cil
lin

Gen
ta

m
ici

n

Cef
ot

ax
im

e

Aztr
eo

na
m

Pipe
ra

cil
lin

-T
az

ob
ac

ta
m

Cef
ta

zid
im

e

Tige
cy

cli
ne

0

25

50

75

100

125
Resfams

ARDB/CARD

N
o.

 R
es

is
ta

nc
e 

G
en

es

N
o.

 R
es

is
ta

nc
e 

G
en

es

Antibiotic Antibiotic

Figure 1 Annotation of functional metagenomic selections using Resfams. Unique full-length open reading frames (ORFs; 490 amino
acids (a.a.)) annotated as AR proteins from functional metagenomic selections using Resfams HMM database (blue) compared with hand
curation (black) and BLAST to AR databases (red) from (a) MDR cultured soil bacteria and (b) human gut microbiota. The Resfams HMM
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amoxicillin selection, MetaGeneMark predicted one ORF in the hand-curated set as two independent ORFs and both were correctly
identified by Resfams.
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soil; 4.3, gut). Whereas class A and class C
b-lactamases have long been considered the most
clinically important classes of b-lactamases, class B
b-lactamases are a growing concern in the effective
treatment of infectious disease (Rice and Bonomo,
2000), exemplified by the NDM-1 carbapenamase
disseminating in MDR pathogens and environmen-
tal habitats (Walsh et al., 2011). Therefore, even
though resistomes appear to be largely constrained
by ecology, our results continue to emphasize the
importance of environmental reservoirs of AR in the
emergence of novel clinical resistance, particularly
in this important class of AR genes.

In addition to Resfams families that discriminate
resistance reservoirs, we sought to determine whether
there was a core resistome across all samples and
across all habitats. Highlighting the extreme diversity
of AR genes, there was no single Resfams family that
was shared across all samples, and only two Resfams
families were shared across 450% of metagenomic
samples (class A b-lactamases and MFS Antibiotic
Efflux), and only six Resfams families were found in
at least one sample from every habitat investigated
(Supplementary Table S3).

Antibiotic resistance potential encoded in microbial
genomes
To understand the relative impacts of phylogenetic
origin and ecological factors in shaping AR reser-
voirs, a greater appreciation for the relationship
between AR function and bacterial community
composition is needed. Accordingly, we used
Resfams HMMs to predict the AR potential encoded
in 6179 microbial genomes from the IMG database
(Markowitz et al., 2012), representing diverse
phylogenies and habitats (Supplementary Table
S4). We summed all Resfams counts in a genome
by the AR mechanisms listed in Supplementary
Table S1 and calculated enrichment of a particular
mechanism in (1) phyla, (2) habitat, as well as
(3) phyla by habitat (Figure 4). Importantly, these
results provide confirmation that Resfams accu-
rately annotates AR function. For example, as was
observed with functional selections, we found no
significant difference in the percentage of total AR
functions encoded in microbial genomes between
habitats (Supplementary Figure S4), contradicting
previous predictions using pairwise sequence align-
ment annotation methods (Hu et al., 2013). Further
confirmation can be seen by examining resistance to
glycopeptides, a class of antibiotics only active
against Gram-positive bacteria because of their large
molecular size that prevents their transport across
outer membrane porins of Gram-negative bacteria
(Pootoolal et al., 2002). Glycopeptide resistance
mechanism distributions across phyla reflect this
AR pressure as they were predicted exclusively in
Gram-positive organism genomes.

Although AR is present in nearly all microbial
genomes (84% of microbial genomes investigated

encode at least one AR gene), there is significant AR
mechanism enrichment by bacterial phyla and
habitat (Figure 4 and Supplementary Table S5). For
example, resistance to b-lactams, one of the most
clinically important classes of antibiotics, is sig-
nificantly enriched in Actinobacteria relative to
other phyla (Po0.01, Fisher’s exact, Figure 4a),
when summed across habitats. This is consistent
with the Actinomycete class of bacteria being
responsible for synthesis of the vast majority of
natural b-lactam antibiotics, therefore requiring self-
resistance. In addition, b-lactamases are enriched in
soil bacteria versus other habitats (Po0.01, Fisher’s
exact, Figure 4b), consistent with the vast majority
of b-lactam-producing bacteria originating in the
soil. However, our results show that b-lactamase
resistance genes in the soil are distributed across
all phyla with no significant enrichment in Actino-
bacteria. This suggests that many soil bacteria,
regardless of phylogeny, have evolved to confer
resistance to b-lactams, revealing a strong habitat by
phylogeny relationship.

As resistance to tetracyclines represented some of
the most discriminating Resfams functions between
the soil and the human gut microbiota from our
functional metagenomic analyses (Figure 3), we
were prompted to further investigate tetracycline
resistance mechanisms encoded by microbial
genomes (Figures 4d and e). There are three known
major mechanisms of tetracycline resistance: MFS
efflux, ribosomal protection and drug inactivation.
Our results suggest that the mechanism by which
bacteria resist tetracycline antibiotics is heavily
biased by habitat. Soil bacteria are significantly
enriched for tetracycline MFS efflux pumps,
whereas human-associated bacteria are significantly
enriched for tetracycline ribosomal protection genes
(Po0.01, Fisher’s exact). These results are consis-
tent with our findings from functional metagenomic
selections (Supplementary Figure S5). Conversely,
pairwise sequence alignment to AR-specific data-
bases incorrectly predicts enrichment of all tetra-
cycline resistance mechanisms in the human gut
versus soil (Figure 5b).

Finally, we observed that pathogenic organisms
are enriched for all surveyed AR mechanisms,
excepting antibiotic inactivation and b-lactamases
(Supplementary Figure S6). b-lactamases have long
been recognized as one of the most widely dis-
tributed mechanism of AR and were found to be
encoded in over 60% of bacterial genomes. Our
results, however, emphasize that b-lactamases are
commonly found in nonclinical environments and
commensal organisms, and this has implications for
understanding the further spread of b-lactamases to
pathogens via nonclinical AR reservoirs (Humeniuk
et al., 2002; Walsh et al., 2011).

The described resistome analysis would yield
significantly different conclusions if microbial
genomes were analyzed using pairwise sequence
alignment to AR-specific databases. Not only would
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the total resistance potential of microbial genomes
be significantly lower (Po0.001, Wilcoxon’s rank-
sum test), but also the phylogenetic and ecological
distribution of AR mechanisms would be signifi-
cantly biased toward more heavily studied human-
associated environments (Figure 5). Using the
Resfams profile HMM database, we predict that a
number of AR functions are enriched in the soil,
consistent with evidence that antibiotic producers
are primarily soil dwelling and that AR is ancient,
having evolved in soil for over the past 30 000 years
(D’Costa et al., 2011). Again, this result is not

recapitulated using pairwise sequence alignment to
AR-specific databases (Figure 5).

Conclusions

Using Resfams, we show that antibiotic resistomes
cluster by ecology, with no core resistome shared
between all samples. For example, while all com-
munities display resistance to tetracycline, soil
bacteria mainly resist tetracycline through MFS
antibiotic efflux, whereas bacteria in the human
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Figure 4 Resistomes annotated by Resfams across phylogeny and habitats of 6179 sequenced bacterial isolate genomes. Binary
heatmaps of genomes organized by (a) phylogeny, (b) habitat and (c) phylogeny within habitat. Sections of the heatmaps are colored if a
particular AR mechanism is significantly enriched within a particular phyla or habitat (Po0.01, Fisher’s exact). Enrichment of
b-lactamase Ambler class and tetracycline resistance functions is depicted across (d) phyla and (e) habitat (*Po0.01, Fisher’s exact).
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gut microbiota typically resist tetracycline via
ribosomal protection mechanisms. Importantly,
these results are consistent between both the
functional metagenomic data sets and the sequenced
microbial genomes.

Our ability to accurately identify and annotate AR
functions in microbial genomes and communities
has important implications for our ability to fight
infectious disease. It improves our understanding of
the evolution, ecology and transmission of AR in
pathogens, as well as has a direct impact on clinical
diagnostics. Currently, the most common method
used to characterize resistome composition from
sequencing data is pairwise sequence alignment to
AR-specific databases (Forslund et al., 2013; Hu
et al., 2013). This approach biases toward human-
associated organisms, vastly underestimating the
potential impact of environmental resistance reser-
voirs on AR in pathogens. In order to address this
problem, we developed and benchmarked a set of
AR-specific gene families (Resfams) and associated
profile HMMs and applied them to functional
metagenomic data sets from the soil and human
gut microbiota as well as to over 6000 sequenced
microbial isolate genomes representing diverse
phylogenies and habitats. By using a consensus
model approach, we are able to significantly
increase our ability to characterize highly diverse

and understudied reservoirs of resistance while
minimizing bias.

In order for the full potential of Resfams AR
protein families to be realized, in-depth functional
validation of genotype to phenotype predictions is
necessary. In addition, Resfams AR protein families
need to be continually updated and maintained in
order to keep up with rapidly evolving bacterial AR.
These challenges emphasize the importance of
continued functional investigation of environmental
and clinical AR reservoirs, and for these investiga-
tions to be intimately connected to the improvement
of methods for annotation of AR phenotype from
genotype.
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